Apžvalga |
Alternatorius yra dviejų žaidėjų stalo žaidimas, kuri 2003-iaisiais išrado Gregory Keith Van Patten (vanpag@alum.rpi.edu). |
Board |
Alternatorius žaidžiamas ant 8x8 šaškių/šachmatų lentos:
|
Tikslas |
Alternatoriaus tikslas yra turėti daugiau taškų nei priešininkas po to, kai abu žaidėjai praleidžia ėjimą. Žaidėjo taškai yra jo spalvos medžių dydžių suma. |
Žaidimas | ||||||||||||
Pirmasis žaidėjas valdo juodus laukelius, o antrasis - baltus. Žaidėjai eina paeiliui pradedant nuo žaidėjo valdančio juodus laukelius. Ėjimas susideda iš dviejų dalių. Pirmiausiai nupiešiamas taškas laukelyje, kuriame dar nėra taško. Paskui nupiešiama tiesi linija iš to taško i šalimais esamo laukelio centrą, kuris dar neturi taško. Linija sujungia du gretimus priešingų spalvų laukelius. Laukelis, kuriame yra taškas, vadinamas "Duobe". Linija vadinama "Kamienu". Laukelis, kuriame yra linijos galas, be taško, vadinamas "Šaknimi". "Duobė" ir "Kamienas" sudaro "Vyšnią" Svarbi pastaba: žaidėjas, valdantas juodus laukelius, gali padeti "Vyšnią" su "Duobe" arba ant juodo laukelio arba ant balto. Tas pats galioja ir baltam žaidėjui.
When you move, it is permitted to draw a new "PIT" on the "ROOT" of some "CHERRY" already on the board: As the game proceeds, "CHERRIES" become connected to other "CHERRIES" by their "STEMS". A connected group of cherries is called a "TREE". For every "TREE" there is exactly one cell which is not a "PIT" but which forms the "ROOT" of at least one "CHERRY" in that "TREE". This cell is called the "TREE’S ROOT". Note that a single "CHERRY" is just a special case of a "TREE".
It is possible to merge two separate "TREES" whose "ROOTS" occupy adjacent squares. This is accomplished by placing the "PIT" of a new "CHERRY" over the "ROOT" of one of these "TREES" and the "ROOT" of that "CHERRY" in the cell containing the "ROOT" of the other "TREE": If two "TREES" can merge, but one has larger size than the other, then the larger "TREE" must be attached to the smaller "TREE". In other words the "CHERRY" which merges "TREES" must have its "PIT" on the "ROOT" of the larger "TREE" and its "ROOT" on the "ROOT" of the smaller "TREE". The "ROOT" of the resulting "TREE" will be on the cell which contained the "ROOT" of the smaller of the two original "TREES". When two "TREES" of equal size merge, it does not matter which "ROOT" becomes the "ROOT" of the resulting "TREE". Below are several examples:
A player may always pass on his turn. The game ends when both players pass on consecutive turns. A player’s score is the sum of the sizes of all the trees which he owns. The player with the higher score wins. |
Komi |
To compensate for an advantage of the first move, the player who owns the white trees can get additional points, called komi. The value of the komi is agreed upon by both players before starting the game. The author advises the use of 3.5 as a value of Komi. Non-integer values are used in order to avoid draws. |